
An Ontology-based Conceptual Model for Composing
Context-Aware Applications

Eleni Christopoulou, Christos Goumopoulos, Ioannis Zaharakis and Achilles Kameas
Research Academic Computer Technology Institute

Research Unit 3, Design of Ambient Intelligent Systems Group
61 Riga Feraiou str. 26221, Patras, Greece

+30 2610 273496
{hristope, goumop, jzaharak, kameas}@cti.gr

ABSTRACT
Ubiquitous computing (UbiComp) applications operate
within an extremely dynamic and heterogeneous
environment. Thus context definition, representation,
management and use become important factors that affect
their operation. UbiComp applications have to dynamically
adapt to changes in their environment as a result of users'
or other actors' activities. To ease the development of such
applications it is necessary to decouple application
composition from context acquisition and representation,
and at the same time provide universal models and
mechanisms to manage context. This paper presents
experiences with using an ontology to represent context of
operation together with decision making for UbiComp
applications that result from the composition of
functionally independent components. These components
were embedded in everyday objects, hence (a) their
services were affected by their physical properties, (b) their
context of operation was defined by the existence /
availability of the objects, and (c) their collective
functionality was emerging from a set of interactions
among them.

Keywords
Ubiquitous computing, ontologies, context-awareness

INTRODUCTION
The vision of Ambient Intelligence (AmI) implies a
seamless environment of computing, advanced networking
technology and specific interfaces [16], [14]. Technology
becomes embedded in everyday objects and environments
such as furniture, clothes, vehicles, roads and smart
materials, and people are provided with the tools and the
processes that are necessary in order to achieve relaxing
interactions with this environment. The AmI environment
can be considered to host several Ubiquitous Computing
(UbiComp) applications, which make use of the
infrastructure provided by the environment and the services

provided by the objects therein.
Since the UbiComp applications operate within an
extremely dynamic and heterogeneous environment, the
context definition, representation, management and use
become important factors that affect their operation.
UbiComp applications have to dynamically adapt to
changes in their environment as a result of users' or other
actors' activities. To ease the development of such
applications it is necessary to decouple application
composition from context acquisition and representation,
and at the same time provide universal models and
mechanisms to manage context.
According to our approach UbiComp applications result
from the composition of functionally independent
components. These components were embedded in
everyday objects, hence (a) their services were affected by
their physical properties, (b) their context of operation was
defined by the existence / availability of the objects, and (c)
their collective functionality was emerging from a set of
interactions among them. The target of this paper is to
present our experience with designing and using an
ontology to compose context-aware UbiComp applications
and our proposition for an ontology-based context
modeling, management and reasoning process.
The rest of the paper is organised as follows. First we
describe how context is modelled and used in various
UbiComp applications along with the definition and use of
context in our approach. Then we present the structure and
the content of the ontology that we developed and
integrated into a middleware that supports the composition
of context-aware UbiComp applications follow. Finally we
conclude with our proposition for ontology-based context
modeling, management and reasoning process in UbiComp
applications and our vision for the use of context in future
UbiComp environments.

CONTEXT-AWARE UBICOMP APPLICATIONS
According to [4] context is: “Any information that can be
used to characterise the situation of entities (i.e. whether a
person, place or object) that are considered relevant to the
interaction between a user and an application, including the
user and the application themselves. Context is typically

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

the location, identity and state of people, groups and
computation and physical objects.” In UbiComp
applications different kinds of context can be used like
physical information, e.g. location and time, environmental
information, e.g. weather and light, personal information,
e.g. mood and activity. Though, the term context is mostly
referred to information relative to location, time, identity
and spatial relationships.
A number of informal and formal context models have
been proposed in various UbiComp systems. Among
systems with informal context models, Context Toolkit [5]
represents context in form of attribute-value tuples, and
Cooltown [9] proposed a Web based model of context in
which each object has a corresponding Web description.
Both ER and UML models are used for the formal context
model presented in [7]. In Gaia system [11], [12] the
context is represented as first-order predicates written in
DAML+OIL. Two similar approaches are COBRA-ONT
[2], an ontology for context-aware pervasive computing
environments represented in OWL, and CONON, [13] an
OWL encoded context ontology for pervasive computing
environments.
It has been acknowledged from many researchers that it is a
necessity to decouple the process of context acquisition and
interpretation from its actual use, by introducing a
consistent, reliable and secure context framework which
can facilitate the development of context-aware
applications [1], [5], [12], [10], [7]. In this respect, we have
proposed a high-level conceptual model, the plug/synapse
model, which eases the composition of context-aware
UbiComp applications and separates it from the process of
context acquisition.
The key idea behind this conceptual model is that artefacts
can be treated as components of a UbiComp application
and users can compose UbiComp applications simply by
creating associations between the artefacts. The
plug/synapse model serves as a common interfacing
mechanism between artefacts providing the means to create
large scale systems based on simple building blocks. Plugs
make visible the artefact’s properties, capabilities and
services to people and to other artefacts, while synapses are
associations between two compatible plugs.
In terms of the application developer, the plugs can be
considered as context-providers that offer high-level
abstractions for accessing context (e.g., location, state,
activity, etc.). In terms of the service infrastructure
(middleware), they comprise reusable building blocks for
context rendering that can be used or ignored depending on
the application needs. Each context-provider component
reads input sensor data related to the specific application
and can output either low level context information such as
location, time, light level, temperature, proximity, motion,
blood pressure or high-level context information such as
activity, environment and mood. An artefact from its own
experience and use has two different levels of context; the

low level is information acquired from its own sensors and
the high level that is an interpretation of its low level
context information. Additionally an artefact can get
context information from the plugs of other artefacts; this
context can be considered as information from a “third-
person experience”.
The application developers by establishing synapses
between plugs both denote their preferences and needs and
define the emerging behavior of the UbiComp application.
From the service infrastructure perspective, the synapses
determine the context of operation for each artefact; thus
each artefact’s functionality is adapted to the UbiComp
application’s structure.
Central to our approach is the use of an ontology, which
provides a formal definition of the domain under
consideration and a conceptual description of the domain
knowledge. The next section presents our experience with
designing and using such an ontology for a UbiComp
system.

AN ONTOLOGY-BASED CONCEPTUAL MODEL
The GAS Ontology [3] that we developed conceptualises
the Gadgetware Architectural Style (GAS) [8], which
supports the composition of UbiComp applications from
everyday physical objects enhanced with sensing, acting,
processing and communication abilities. UbiComp
applications are dynamic, distinguishable, functional
configurations of associated artefacts, which communicate
and/or collaborate in order to realize a collective behavior.

Designing the GAS Ontology
We have decided each artefact to have an ontology that
contains the description of the basic concepts of UbiComp
applications and their inter-relations. This knowledge must
be common for all artefacts in order to support the feasible
communication among them. Although an artefact’s
ontology should both describe the way that this artefact is
used and represent its acquired knowledge. Specifically an
artefact’s ontology should represent its description and the
descriptions of its plugs and services. Additionally an
artefact’s ontology should represent the new “knowledge”
(experience) that the artefact has accumulated from the
synapses that the artefact’s plugs participate to. So the
knowledge that each artefact’s ontology represent cannot
be the same for all artefacts, as it depends on the artefact’s
description and on the UbiComp applications that the
artefact has participated in the past. Thus artifacts may end
up having different ontologies.
Since artefacts’ interoperability is designed to be based on
their ontologies, the existence of different artefacts’
ontologies could result to inefficient interoperability. In
order to handle this issue we decided to allow each artefact
to have a different ontology with the condition that all
artefacts’ ontologies will be based on a common
vocabulary. According to this solution the GAS Ontology
is divided into the following two layers: the GAS Core
Ontology (GAS-CO) and the GAS Higher Ontology (GAS-

HO). Specifically the GAS-CO provides artefacts with the
necessary common language that they need in order to
describe their acquired knowledge, which is represented
into the GAS-HO. Thus, although all artefacts have
different knowledge, it is represented with terms and
concepts common to all artefacts.

GAS Core Ontology (GAS-CO)
The GAS-CO describes the common language that
artefacts use to communicate. So it must describe the
semantics of the basic terms of UbiComp applications and
define their inter-relations. Since a service discovery
mechanism is necessary to a UbiComp system, this
ontology must also contain a service classification to
support this mechanism. An important feature of the GAS-
CO is that it contains only the necessary information for the
interoperability of artefacts in order to be very small and
even artefacts with limited memory capacity may store it.
The GAS-CO is static and it cannot be changed either from
the manufacturer of an artefact or from a user. Following
we describe the basic terms of the UbiComp applications
and their inter-relations that are represented in the GAS-
CO. A graphical representation is on Figure 1.

Figure 1: A Graphical Representation of GAS-CO
The core term of GAS is the eGadget (eGt); with this term
we refer to artifacts of Ubicomp applications. In GAS-CO
the eGt is represented as a class, which has a number of
properties, like name etc. The notion of plug is represented
in the GAS-CO as another class, which is divided into two
disjoint subclasses; the TPlug and the SPlug. The TPlug
describes the physical properties of the object that is used
as an artifact like shape, material, etc.; note the cardinality
restriction that an artifact must have exactly one TPlug. On
the other hand an SPlug represents the artifact’s capabilities
and services; artifacts may have an arbitrary number of
SPlugs. Another GAS-CO class is the synapse that
represents the association between two plugs; a synapse
may only appear among two SPlugs. Using the class of
eGW the GAS-CO can describe the UbiComp applications
that are created by the users; an eGW is represented by the
artifacts that contains and the synapses that compose it. The
class of eGW has two cardinality constraints; an eGW must

contain at least two artifacts and a synapse must exist
between their SPlugs.

The service classification
As an artefact through a plug provides a number of
services, the GAS-CO contains a class for the notion of
service. Since for the UbiComp applications a semantic
service discovery mechanism is useful and the replacement
of artefacts depends on the services that artefacts offer, a
service classification is necessary.
In order to define such a service classification we first
identified some services that various artefacts may offer;
some results of this work are presented in Table 1. From
these results it is clear that the services offered by artefacts
depend on artefacts’ physical characteristics and their
sensors/actuators.

Artefact Offered services

eLamp switch on/off, light, heat
eBook open/close, number of pages,

current page
eDrawer contains objects yes/no, number

of objects, open/close,
locked/unlocked

eMusicPlayer sound, sound volume,, kind of
music, play/pause/stop,
next/previous track

eCarpet object on it yes/no, objects’
position, pressure, weight,
frequency

Table 1: Services Offered By Artefacts
Next we had to decide how we should classify the services.
The classification proposals that we elaborated are the
following: by object category, by human senses and based
on the signals that artefacts’ sensors/actuators can
perceive/transmit. We decided to combine these proposals
so that to describe a more complete classification.
So we initially defined the following elementary forms of
signals that are used: sonic, optic, thermal, electromagnetic,
gravity and kinetic. These concepts are divided into lower
level services (subclasses); e.g. the sonic service may be
music, speech, environmental sound, and noise.
Additionally services may have a set of properties; e.g.
sonic can have as properties the volume, the balance, the
duration, the tone, etc.
Finally we enriched this classification by adding services
relevant to environmental information, like humidity and
temperature, and the concepts of time, position and
movement.

GAS Higher Ontology (GAS-HO)
The GAS-HO represents both the description of an artefact
and its acquired knowledge. These descriptions follow the
definitions contained in the GAS-CO. So, specifically the

knowledge stored into the GAS-HO is represented as
instances of the classes defined into the GAS-CO. For
example the GAS-CO contains the definition of the concept
SPlug, while the GAS-HO contains the description of a
specific SPlug represented as an instance of the concept
SPlug. Note that the GAS-HO is not a stand-alone
ontology, as it does not contain the definition of its
concepts and their relations.
Since the GAS-HO represents the private knowledge of
each artefact, it is different for each artefact. Therefore we
can envision GAS-HO as artefact’s private ontology.
Contrary to GAS-CO, the size of which is required to be
small enough, the size of GAS-HO depends only on
artefact’s memory capacity. Obviously GAS-HO is not
static and it can be changed over time without causing
problems to artefacts communication. As the GAS-HO
contains both static information about the artefact and
dynamic information emerged from its knowledge and use,
we decided to divide it into the GAS-HO-static and the
GAS-HO-volatile.
The GAS-HO-static represents the description of an
artefact containing information about artefact’s plugs, the
services that are provided through these plugs, its sensors
and actuators, as well as its physical characteristics. The
knowledge represented by the GAS-HO-static can only be
updated if the physical or digital properties of the artefact
change. So the information represented by the GAS-HO-
static can be considered as a description of an artefact’s
“self”.
On the other hand the GAS-HO-volatile contains
information derived from the artefact’s acquired knowledge
and its use. Specifically it describes the synapses which the
artefact’s plugs are connected to, the UbiComp applications
which it takes part to, as well as information about the
capabilities of other artefacts that has acquainted through
communication. An artefact’s GAS-HO-volatile is updated
during the artefact’s various activities, like the
establishment of a new synapse. Although the GAS-HO-
static and the GAS-HO-volatile contain different
knowledge, both of them are based on the GAS-CO and
contain instances of its concepts.

Using the GAS Ontology
In this section we show how we have used the GAS
Ontology, for the composition and deployment of context-
aware UbiComp applications. The examples that follow are
based on the “study” scenario. According to this scenario,
two artifacts, an eBook and an eLamp, are associated via a
synapse which is established between two plugs forming a
“study” UbiComp application. When the user opens the
eBook, the eLamp switches on, adjusting the light
conditions to a specified luminosity level in order to satisfy
the user’s profile. Each artifact operates independently of
the other. Two plugs are being used in this scenario:
“open/close” reflecting the state of the book and “switch
on/off” reflecting the state of the lamp.

The GAS Ontology is used in order to support the semantic
interoperability among artefacts, to handle the necessary
adaptivity of UbiComp applications and to provide them
with context-awareness. Since all artefacts use the same
vocabulary for the representation of their abilities the
semantic interoperability among them is ensured. This
common vocabulary is represented by the GAS-CO, so
both the eBook and the eLamp artefacts have stored the
same GAS-CO. The service classification is represented
into the GAS-CO so that to support a service discovery
mechanism. So, if a synapse is broken, e.g. because of an
artefact’s failure, another artefact that offers a similar
semantically service will be found.
As the context information that is used in such UbiComp
applications describes the physical and digital properties of
artifacts, it is represented into both the GAS-CO and each
artifact’s GAS-HO-static. Specifically an artefact through
its TPlug provides other artefacts and users with context
information about its physical properties. On the other hand
through its SPlugs, an artefact provides context information
both low level, data from sensors, and high level,
interpreted low level context. This kind of context
information is represented into an artefact’s GAS-HO-static
by using the terms described into the GAS-CO.
Reportedly to the “study” scenario, the eLamp’s GAS-HO-
static contains information about eLamp’s TPlug and
“switch on/off” SPlug. Correspondingly the eBook’s GAS-
HO-static contains the description of eBook’s TPlug and
“open/close” SPlug. Specifically through its TPlug the
eBook provides to the other artefacts and to people context
information about its type, number of pages, dimensions
and the sensors/actuators attached to it. The eLamp through
its TPlug, provides similar information based on its own
properties.
On the other hand, artefacts through their SPlugs provide
different kind of context information than through their
TPlugs. For example, the eBook’s “open/close” SPlug
reflects the state of the eBook; if it is open or close. We
refer to such context information as low level context, since
it represents raw data from a sensor. The information
provided from an “open/close” SPlug that also notifies
about the specific page on which the eBook is opened, is
referred as high level context. Correspondingly, the
eLamp’s “switch on/off” SPlug informs the other artefacts
and the people about the eLamp’s state as well as about the
eLamp’s ability to provide the service of “light”. The
eLamp through this SPlug provides not only low level
context information, like if it is switch on or off, but also
high level context information, like the color of its light
and the selected luminosity.
The GAS-HO-volatile of artifacts contains mainly
knowledge emerged from the synapses that compose an
UbiComp application. This information represents both
context information from other artefacts (“third-person
experience”) and the artifact’s behavior when it gets

context information via its synapses. Note that these
behaviors are defined by the developer of the UbiComp
application. So when a user sets a synapse between two
plugs, the knowledge emerged from this synapse is stored
in the GAS-HO-volatile of both artifacts that participate to
it.
According to the “study” scenario a synapse is established
between the two plugs of eBook and eLamp. Both artefacts
via this synapse can get context information, mentioned as
“third-person experience”, from the other artefact. For
example, such “third-person experience” is the context
information that the eLamp gets via this synapse about the
eBook’s state.
The description of this synapse is represented into both
eBook’s and eLamp’s GAS-HO-volatile. Although this
description is same for both artefacts, provides them with
different “knowledge”. Specifically for the eLamp this
description defines its behavior on different context that it
can get via this synapse; if it gets the information that the
eBook is close then it must be switched off and if the
eBook is open it must be switched on. On the other hand,
since this synapse doesn’t imply the transition of the
eBook’s state on the modifications of context, its
description just denote that the eBooks’ “open/close” SPlug
participates to a synapse with an SPlug that provides the
service “light”. It is evident that the GAS Ontology
contains both context information and the description of
the behaviors in proportion to context; so it can support the
context-awareness of such UbiComp applications.

CONCLUSIONS AND FUTURE WORK
Central to our approach is the use of an ontology, which
provides a formal definition of the domain under
consideration and a conceptual description of the domain
knowledge. The GAS Ontology that we developed
sufficiently supports the composition of context-aware
UbiComp applications from everyday enhanced physical
objects and it also address a number of key issues of such
applications like adaptivity and semantic service discovery.
Although in order to enable the development of synergistic
and scalable mixed communities of communicating
artefacts and plants [6], we had to enhance the GAS
Ontology incorporating a number of new concepts. The
basic new concept that we integrated into the GAS
Ontology is the ePlant. Similar to artefacts that are
enhanced everyday objects, ePlants are plants enhanced
with sensing, acting, processing and communication
abilities. The description of an ePlant doesn’t significantly
differ to the one of an eGadget, as both have a TPlug and a
set of SPlugs. Since their basic difference is based on their
physical properties, which are represented by their TPlugs,
these two concepts can be regarded as subconcepts of a
higher concept. Thus we decided to add to our ontology the
concept of eEntity, which is divided into the disjoint
concepts of eGadget and ePlant.

The context model that we selected for these UbiComp
applications is the same ontology-based model. Although
we decided to use a context management and reasoning
process especially for the definition of a plant’s state and
behaviour. The first step of the context management
process is the acquisition of the low-level context; e.g. the
plant signals from sensors. Then if the low-level context is
not sufficient for an eEntity in order to make a decision, it
will be interpreted to high-level context information.
Having acquired its necessary context, an eEntity can
assess its state and decide its appropriate reaction
(behaviour).
The interpretation of high-level context information, the
state assessment and the reaction selection will be based on
a set of rules. For these UbiComp applications we will use
rules and constraints (axioms) in operational representation
forms, that provide inferential and validation mechanisms,
so that to allow the use of the ontology for reasoning. The
reasoning will be based on the definition of the ontology,
which may use simple description logic or user-defined
reasoning using first-order logic.

Our Vision
Future ubiquitous computing environments will involve
hundreds of interacting and cooperating devices ranging
from unsophisticated sensors to multi-form actuators.
Although the majority of these devices may have limited
resources (computation, memory, energy, etc) or may be
only oriented to certain tasks, their collective behaviours
through local interactions with their environment may
cause coherent functional global patterns to emerge. Hence,
the combination and cooperation of locally interacting
artifacts with computing and effecting capabilities may
trigger the continuous formation of new societies that
provide services not existing initially in the individuals and
exhibiting them in a consistent and fault-tolerant way.
As these societies are dynamically reconfigured aiming at
the accomplishment of new or previous related tasks, their
formation heavily depends not only on space and time but
also on their context of previous local interactions,
previous configured teams, successfully achieved goals or
possibly failures. This means that in order to initially
create, manage, communicate with, and reason about, such
kinds of emergent ecologies, we need somehow to model
and embed to these entities social memory, enhanced
context memory, and shared experiences. One step to this
end is the design and implementation of evolving multi-
dimensional ontologies that will include both non-
functional descriptions, and rules and constraints of
application, as well as aspects of dynamic behaviour and
interactions. A core ontology will be open and universally
available and accessible; however, during the ecology life-
time the core ontology is evolved into higher goal,
application and context specific one. Hence, ontologies
describing specific application domains can be proprietary.

REFERENCES
1. Biegel G., and Cahill V. A Framework for Developing

Mobile, Context Aware Applications, 2nd IEEE
Conference on Pervasive Computing and
Communications, Orlando, FL, March 14-17, 2004.

2. Chen, H., Finin, T., Joshi, A. An ontology for context
aware pervasive computing environments, to appear,
Knowledge Engineering Review - Special Issue on
Ontologies for Distributed Systems, Cambridge
University Press, 2004.

3. Christopoulou, E., Kameas, A. GAS Ontology: an
ontology for collaboration among ubiquitous computing
devices, to appear in International Journal of Human –
Computer Studies, Protégé special issue, 2004.

4. Dey A. K. Providing Architectural Support for Building
Context-Aware Applications, PhD dissertation.
Georgia Institute of Technology, November
2000.Baldonado, M., Chang.

5. Dey A. K., Salber D. and Abowd G. D. A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications, Human-
Computer Interaction (HCI) Journal, Volume 16 (2-4),
pp. 97-166, 2001.

6. Goumopoulos, C., Christopoulou E., Drossos N. and
Kameas A. The PLANTS System: Enabling Mixed
Societies of Communicating Plants and Artefacts, to
appear in European Symposium on Ambient Intelligence
(EUSAI), Eindhoven, the Netherlands, November 8-10,
2004.

7. Henricksen K., Indulska J., and Rakotonirainy A.
Modeling Context Information in Pervasive Computing
Systems, In F. Mattern and M. Naghshineh, editors,
Pervasive 2002, pages 167– 180, Springer Verlag,
Berlin, 2002.

8. Kameas A., et al. An Architecture that Treats Everyday
Objects as Communicating Tangible Components, in
the proceedings of the 1st IEEE International
Conference on Pervasive Computing and
Communications (PerCom03), Fort Worth, USA, 2003.

9. Kindberg T. et al. People, Places, Things: Web
Presence for The Real World, Technical Report HPL-
2000-16, HP Labs, 2000.

10. Nixon P. et al., Engineering context-aware enterprise
systems, in Workshop on Engineering Context-Aware
Object-Oriented Systems and Environments, Seattle,
USA, 2002.

11. Ranganathan, A., Campbell, R. A Middleware for
Context-Aware Agents in Ubiquitous Computing
Environments, in ACM/IFIP/USENIX International
Middleware Conference, Rio de Janeiro, Brazil, 2003.

12. Ranganathan A. and Campbell R. H. An infrastructure
for context-awareness based on first order logic,
Personal and Ubiquitous Computing, 7(6):353–364,
2003.

13. Wang X. H. et al. Ontology Based Context Modeling
and Reasoning using OWL, Workshop on Context
Modeling and Reasoning at IEEE International
Conference on Pervasive Computing and
Communication (PerCom'04), Orlando, Florida, March
14, 2004.

14. Disappearing Computer initiative website
http://www.disappearing-computer.net/

15. extrovert-Gadgets project website http://www.extrovert-
gadgets.net

16. ISTAG website http://www.cordis.lu/ist/istag.htm
17. Semantic Web in UbiComp Special Interest Group.

http://pervasive.semanticweb.org

